MODEL OF THE MOTION AND SHOCK WAVES IN TWO-PHASE
SOLIDS WITH PHASE TRANSITIONS

R. I. Nigmatulin

The one-velocity and one-temperature model of the motion of a two-phase solid, in which
each phase occupies a certain part of the volume, is considered. The investigation is car-
ried out in Lagrangian variables, which offers certain advantages in solving one-dimension-
al nonstationary problems. The stress tensor for the mixture is decomposed into two parts —
hydrostatic pressure, common to the two phases, associated with the three-term equation of
state, and the deviator, which varies elastically up to a certain value and then remains con-
stant. A certain relation, determined by the characteristic reaction time, is proposed for the
phase transition kinetics. Then a solution is obtained for the problem of the nonstationary
one-dimensional motion of a metal (iron) resulting from the impact of a plate against a tar-
get. The phase transitions (Fe®== Fef) behind the wave and their characteristic time have
an important effect on the damping of the disturbance and on the zone in which these trans-
itions go to completion. A method is proposed for determining the coefficient in the relation
for the phase transition rate from the residual effect (hardening) after impact.

1. We will examine in Lagrangian coordinates rK the motion of a two-phase continuum in which each
phase is characterized by its own true density p;° and volume content aoj (i =1, 2),

o+ ap =1, (1.1)

Let the velocities and hence the displacements of both phases coincide. We isolate a material vol-
ume V bounded by the material surface Z. Congsidering its state at times 7 =0 and 7 =t in the absence of
external body forces, we can write the integral mass-conservation equations for the first and second
phases

{ow(ryav = § [ear I ¢ 0+ $ T D Ty Dy dx |V
v 0
t
$onmrdv = [oatr 1, =T 02 myae | av, €2
v \2 0

The subscripts 1 and 2 relate to the first and second phases, respectively; the subscript 0 relates to
the initial state at 7 = 0; Jy, is the phase transition rate or the mass transferred from the first phase to
the second (or conversely, with opposite sign) per unit volume of mixture per unit time; I(r,t) is the degree
of expansion of the medium or the Jacobian of the transformation from Eulerian to Lagrangian coordinates;
pj is the mean density of the i-th phase;

p1 =10, P2 =pa2"%s . (1.3)
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Adding Eqgs. (1.2), we obtain the mass-conservation equation for the mixture:
Spo(r)dV=Sp(r, t)I(r, tydv (p=p1+p2) - (1.9
v v
(e— density of mixture)

Within the framework of the one-velocity and one-temperature model it is sufficient to consider
only the equations of motion and energy of the mixture as a whole:

\ oo () [v(r, ) = vo(r)1dV = SS 6.°d D dv
v i (1.5)

¢
S [(9191 + 0222} I — (Pro€10 - P20f20) +- Po _vo ,dV SS °vd Zdr
b

v

Here v is the velocity of the medium, ej the specific internal energy of the i-th phase, and ¢° the La~-
grange stress tensor [1] in the medium in question.

Usging the Gauss theorem and differentiating (1.2) and (1.5) with respect to t, after certain transfor-
mations we obtain the following system of differential equations:

Po O Po _ Po 9p; Po _

T +p 10t ,-—_—JH_O, » z+ zat—‘—p‘-'rm—o (1.6)
. 3 a o '

Po *at = V.o, [91 ail + P2 aiz —|—(e2—e1)J12]:(c Vyv.

2. We must now consider the thermodynamic and mechanical properties of the medium. The Euler
stress tensor okl can be represented in the form of a sum of isotropic and deviatoric components,

ot = — pdl 4. g, (2.1)

We take the value of p from the equations of state, assuming that both phases are at the same pres-
sure:

p=p s T)=p2(p° 7). (2.2)
The stress deviator for the mixture is
T = oyt - Ty, (2.3)

We assume that the sfress deviator of the i-th phase 'rikl varies elastically up to the yield point 7%,
after which it should remain constant. We can then write the following equation for the deviator compo-
nents in the principal axes:

atlt

. .
=2, (si’f’ + g—zf—) @ <y (2.4)

where sikl is the strain rate tensor. We note that in the presence of impact loading pressures of the order
of hundreds of kilobars the deviator, despite its smallness as compared with the hydrostatic pressure,
may have an influence on the damping of the disturbance.

We will not consider questions relating to the use of the Lagrange stress tensor, since in what fol-
lows the equations obtained are used to solve one-dimensional nonstationary problems, in which these
questions do not present difficulties.

The specific internal energy and pressure of a solid or liquid are usually represented in the form of
a sum of three components [2-4], which respectively describe the cold elastic properties, the harmonic
vibrations of the lattice atoms, and the thermal excitation of the electrons together with anharmonic atom-
ic vibration effects

6’(‘90: T): ép“}'eT_!_eea! P(Po’ T)pr '!‘ P+ Pea
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Here, 7y(p°) is the Gruneisen constant (for harmonic atomic vibra-

5 : tions), c = const is the atomic heat, T'(p°) is an analogue of the Gruneisen

\\ constant associated with anharmonic effects and electron excitation. The
J

function pp(p°), on which B(p°), I'(0°) and y(p°) depend, is determined ex-
perimentally. A very convenient method of determining the equation of
state of metals and ionic crystals, the so-called method of potentials, was
Fig. 1 proposed in [4]. The potential components for the internal energy and
pressure have the form

e, (p°) = 3Ab™ expb(l —as) — § Kz~ (x=po"/p°

2.6
Po (0°) = Aa~Vexpb (1 —a'h) — Ka~ , (2.6)

Here, A, K, b, p,° are quantities fixed for each metal or each phase. For the Gruneisen constant it is
possible to take the linear approximation

) =a—Pp°/ps (2.7)
which is valid for many metals and their phases over a quite broad density range.

The approximation of constant specific heat for e significantly reduces the volume of computations
and at the same time is accurate enough at T > 9, where # is the Debye temperature, and is perfectly jus-
tifiable in connection with impact loading problems.

The part of the internal energy associated with the squafe of the temperature becomes important
when the pressure in the shock wave exceeds 1 mbar (T > 10,000°K). There are varying opinions [2-4] re-
garding the computation of egy and peg.

The possibility of phase transitions leads to the necessity of coordinating the equations of state of
the phases for the internal energies, in order to take the energy transitions correctly into account. We in~
troduce the operator

Ei(p T) = e (p°) + i + By (p,°) T2, (2.8)

Then the normalized equations for the internal energies of the phases can be written in the form

e (p T) = E (o8 T) + eqys e (p2s T) = Es (po°y T) + ep2 9.9
{ep1 = comst, ey = Ey (Plsoo, To) + I, (Ty) — E, (stooa Ty) -+ ey = const) (2.9)

where the phase densities on the saturation line pyg° and pye° are determined from the equations

P1 (p1so™s To) = ps (L), Dz (p2se’s To) = Ds (T0) (2.10)
where pg(T) is the phase transition pressure or the phase equilibrium line, and the pj take the form
Pilpsr T) = ppi (0:°) + v: (0 "e:T + Bi ()T (p:7)p " T2, (2.11)

If the equations of state of the phases (2.11) and the saturation line pg(T) are known, starting from
the Clapeyron-Clausius equation we can determine

_z,(T)z(_ pjs" — p:u)@ 2 —py). (2.12)

Generally speaking, the function pg(T) and the equations of state of the phases (2.9) and (2.11) are not
independent and they must be adjusted so that the Clapeyron-Clausius condition is satisfied on the entire
saturation curve.
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The phase transition kinetics in solids at high pressures have not been investigated in sufficient de-
tail from the quantitative standpoint. Therefore, as a first approximation, it is desirable to start from the
general propositions of the thermodynamics of irreversible processes. First, we divide Jy, into two com-
ponents

Jig = jiz ~ jn (2.13)

each of which can only be nonnegative (ji3 = 0, joy = 0), while at any point one of them is necessarily equal
to zero. If there are no phase transitions, then ji5 = jo; = 0. Then jy, gives the rate of transition from the
first phase to the second, and j,q that from the second to the first. We assume that the phase transition
(for example, 1 — 2, if py » 0) proceeds the more rapidly, the more the thermodynamic potential of the
substance in the first phase exceeds that of the substance in the second phase at the same pressure and
temperature (and similarly for the transition 2 — 1, if p, > 0), i.e.,

Jiz = Folo (o, T) — 2 (py I (p1 >0, 91> @),
jz=0 (=0 ore<<y)

(2.14)
Jouo = Foy [ (0, T) — 01 (2, )1 (02> 0, 92> @1)s
jm=0 (=0 orgu<ey .
We note that
1 (ps (1), T) = @y (ps (1), 1), (2.15)

Let us examine the pV diagram (Fig. 1), where we have plotted the isotherms corresponding to the
first phase OK(A; and the second phase B;K,A, for the same temperature.

Along the isotherm we have dg = Vdp (¢ =e + pV — Tg, where s is the entropy and V the specific
volume). Hence it is clear that the differences of the thermodynamic potentials at points A; and A, and at
points By and By are equal to the areas K{K;AsA; and K K,B,B4, respectively, or

¢ (4) — 9 () = (p — p)AV, @ (By) — ¢ (By) = (ps — P)AV.
Then equations (2.13) take the form

Jiz = FioAV (p — ps) (91>Ov P > Dps)
Jio =10 (91:“0 or P<pS)

ju = FyAV (ps — p) (Pz >0, ps >p)
ju=0 (pa=0 o p;<p),

(2.16)

Starting from the characteristic transition time, we can estimate the coefficients Fy, and Fyy. We
note that a similar investigation was conducted in [5] for the phase transition kinetics relating to vapor-
liquid mixtures.

3. We write the system of differential equations (1.6) for one-dimensional plane motion (vy = v(r),
vy = vy = 0), going over to the variables p°, ps°, o, v, T, p, 7“, r, where r is the Lagrangian coordinate in
the direction of motion. In this connection we make use of the fact that

oI/ ot = dv/ or (3.1)

and the fact that the components of the Lagrangian ¢° and Eulerian ¢ stress tensors are related by the fol-
lowing expressions:

1l = gt po°E = p 0% = 90622 =pe0% . (3.2)

Then system (1.6) takes the form

o ap p1° da by P9 Jn
p 9t o ot 1 pg ar  p
1—a 9p,° p® da Pz Ov Jiz
p o oo T et
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op’° aps° aT ol gy J12
T3 S5 O 35— g g 7~ = by = o (e —a) _p,,
PN ‘9p2° . aT 1 9ol (3.3)
G T GG o 5 =0, G = o
Here,
° p1 [ BEy ; :
a5 (P 02° o, T) = T(W)T , @a2 (P p° @, T) = %(gif:)T
Gos (017, p5% @, T)— 2L( 2B} o (0Ey (op)
w(Ps 0% o T)= (57 ) +2H (7). eulee, )= (\aplo>T (3.4)
o . ap a ap;
A (02 T)= — <apzo ).T’ a4a(01°s P2 T) = (7’%)5,5 - <T9PT> .
s 02°

The fourth of Egs. (3.3) was obtained after differentiating Eq. (2.2) with respect to t (equal phase
pressures). Adding the first two of Eqgs. (3.3), we obtain the mixture continuity equation

8 T g or (3.5)

For the case in question, Eq. (2.4) for the deviator component ’ri“, with account for (3.5), takes the
form

vl 4
el Ul P (Tt N 7y P (3.6)

For given phase equations of state (2.9), (2.11), phase equilibrium line p¢(T), and coefficients ¥y, and
¥y in Egs. (2.16) system (3.3), together with (3.4), (2.1), (3.6), is closed in the region of continuous motion
of a two-phase compressible solid. We note that in the case of absence of one of the phases (¢ = 0 or a =
1) system (3.3) automatically goes over into the system of equations of motion of the corresponding one-
phase medium.

We have examined, within the framework of the model described, the problem of the plane impact of
a plate of thickness Iy (projectile), with infinite dimensions in a direction perpendicular to the motion, on a
half-space or layer of thickness [ — I, (target, located on the right). Let the stresses (boundary conditions)
to the left of the point r = 0 and to the right of the point r = be known

0,5y =0y (2), (L) =0 (), (3.7)

In the simplest case oy(t) = o7(t) = 0. At t =0 the undisturbed state of the system (initial conditions)
is known

P10°s P’ o =1, Toy, TL=0

and, moreover,
v (=2 O<<r<<h) (=0 (L<<r<). (3.8)

In order to solve the problem we employed the so-called method of straight lines or the particle
method with pseudo-viscosity.

In [6] this method was examined, with appropriate references, in connection with the calculation of
elastoplastic flows in Euler variables.

In the coordinate system (r,t) we take points 1y, Ty, ..., Tn-y, n (Y9 =Ty, Ty < 0; vy =l + 1 —1n_y4,
rp-y < J) on the r axis in the flow region and draw the straight lines r =rj (j =0, 1, ..., n), which corre-
gponds to dividing the system into n material particles. Assuming the existence of a sufficiently smooth
solution, we determine the values of the unknown functions at points r = rj, and substitute for the deriva-
tives with respect to r the difference relations
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v vj+1 (t) - 7;]._1 (t) (g{i{ - 6‘;}.1 (t) - G}El (t)

(\5.)_7.: i — g or )j”" iy — Tit 2 (3.9)
the boundary conditions (3.7) being removed to r = ry and r = ry, respectively. As a consequence, the sys-
tem of six partial differential equations (3.3) and (3.6) is converted into a system of 6n ordinary differen-
tial equations with respect to time, which together with the initial conditions at t = 0 give a Cauchy prob-

lem whose computer solution does not present special difficulties.

When there are shock waves in the flow region, the solution of the problem should have a discontinu-
ity, at which the Hugoniot conditions must be satisfied. In order to apply the method described to these
problems, Richtmyer and Neumann proposed introducing the pseudo-viscosity, whereupon the stress tensor
takes the form

ot =—pj+ 1" —9;
(Pj == Poaggncn l vj+1 - ”j ln (vj+1 - UJ' < O)r (Pj =0 (v,ﬂ-l - Uj > 0)

(3.10)

the linear (n =1, C; =~ 1) and quadratic (n = 2, C; ~ 2) pseudo-viscosities being usually employed.

We note that the stress at a point separating the projectile and the target cannot be tensile; there-
fore, starting from time t; (after passage of the shock wave), when

ol (I, ty) = —p (I, ) + ™ (I, &) = 0

we obtain the additional boundary condition
o, =0 (>t (3.11)

which corresponds to the independent motion of the target and the projectile (withdrawal or rebound of the
projectile), A similar situation may develop after spallation (disturbance of continuity in the interior of
the specimen). However, the question of the onset of spallation [7] is a rather complex one and will not be
considered here, although mathematically it is not difficult to take spallation eifects into account.

4. The above model and calculation scheme were used to investigate nonstationary motion, when the
material of the projectile and the target is iron, in which the transition Fe® — Fef takes place behind a
sufficiently intense shock, and during unloading the transition Fe® — Fe®, In the undisturbed state only
the first (Fe®) phase is present (a;= 1, py = 7860 kg/m?). The coefficients of equations of state (2.5)-(2.7)
have the following values [4]:

for Fe®
A = 9.9743-10° bar, K = 10.1639-10° bar, b = 7.0985
¢ = 4.45-10% m?/sec?-deg 1 = 2.04—0,36 p1°/ py,

for Fe®
A = 9.,4389 -10° bar, K = 10,740 105 bar, b = 7.7845

¢ = 4.45+10% m¥sec?- deg, Ve = 2.45—0,77 0,° / pe

The phase equilibrium curve pg(T) for Fe® and Fe€ can be represented in the form

ps (T) = K, [0,0901—0,0152 (T / Ty) + 0.0021 (I /'To)*]
(Ko = 16.953+10° 6ap, T, = 300° K). (4.1)

bt >

arl g¢,
[ ’\ This relation corresponds to the curve ob-
170

/ y’ %/% tained by Kaufman [8] as a result of an analysis of
the static and dynamic experiments of various au-
it AT
18 V Kl' E’ 245 m 5 75 uses
2 7
— —

thors and located on the phase diagram of of iron
7 ~5- - i T, m

.
I

— 8 A

at temperatures below the so-called triple point
{p=110 kbar, T=800°K). Certain aspects of this
phase transition in iron were examined in [2-4] with
Fig. 2 references to the work of S, A, Novikov, A, G,
Ivanov et al,, A. Bolchan, and D, Erkman et al.in

3
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—Y T . . .
o [ \‘ /\r/t:m )&/{/— which a series of characteristics of shock waves in solids that
i psec K Lo experience phase transitions (in particular, the formation of a
’ PV [ R o [V multiwave structure and unloading waves) were examined,
. / chiefly for the stationary case.
/ :
t=/i/\ M[ \%\ / For lack of other data the quantities characterizing the
225 TREAY /" resistance of the medium to dynamic shear were assumed to
w y \// be the same for both phases
A 8
g 7 72 7 Tomm 1 = Py = 0,906 -108 bar, 7* = 1,* = 4.79-10%bar, .

By way of example Figs. 2 and 3 show diagrams of the
stresses ¢!l and @ at various moments of time for a plate
(I4 = 3 mm) striking a target with velocity v, = 1325 m/sec. The values Fy, = Fy = 6.45 sec/m?® were taken
for the phase transition rate coefficients. The curve corresponding tot = 1.4 usec (Fig. 2) is denoted by
letters, hg being the elastic precursor, gf, the jump taking the first phase into the nonequilibrium state (of
finite thickness owing to the pseudo-viscosity), ed, the relaxation zone or phase transition wave, where the
transition Fe® — Fef takes place (its thickness is determined by Fy,), dcb,the unloading wave taking the
second phase into the nonequilibrium state,ba, the unloading wave corresponding to the transition Fe® —~
Fe® (if Fy; — =, ba is transformed into an unloading shock); ao is the next unloading wave.

Fig. 3

The presence of a deviator leads to the earlier onset of shock-wave attenuation as compared with
the purely hydrodynamic model, since the elastic unloading wave has a greater velocity than the plastic
unloading wave. The finite time required for phase transition and the multiwave structure formed also re-
sult in the wave, atwhich the transition Fe® — Fe€ ends,beginningto attenuate much earlier than follows
from simple considerations associated with the shock adiabat. Moreover, at the moment of impact the
shock amplitude corresponds to the shock compression of the first phase, in which the entire particle vel-
ocity drop (in the given case v/2) is realized. With distance from the impact point the amplitude of this
jump tends to its stationary value, when it corresponds to only part of the drop, the remainder corre~
sponding to the phase transition wave.

We note that if the impact velocity v, of a plate of the same material and sufficient thickness exceeds
1625 m/sec, the structure of the entire shock wave tends to the stationary configuration before the arrival
of the unloading wave.

If 650 < v, < 1625 m/sec, then this stationary configuration does not exist, since the jump gf has a
greater velocity than the wave ed, but each of these waves tends to its stationary amplitude before the ar-
rival of the unloading wave.

5. Calculations with different values of the coefficient Fy, for the rate of the phase transition 1 — 2
[see (2.16)] show that, other things being equal, the depth § of the zone in which the phase transitions were
completed (AB in Fig. 3), depends importantly on the assumed value of Fy,, while the curve omin(r)
(dashed line in Fig. 3) rises steeply from the point B, This makes it possible to determine Fy, from the
residual effect, for which it is necessary to determine the actual depth of the zone 6 after a suitable ex-
periment.

In this connection we draw attention to the "explosion hardening" of iron and low-carbon steel, when
the passage of a shock wave of sufficient intensity is followed by a significant increase in the mechanical
characteristics (for example, hardness) (9]. An analysis of the hardness curves over the depth of the tar-
get shows that at sufficiently high velocities there are three hardening zones: a first zone of substantial
hardening, in which the hardness is actually constant over the depth; a second narrow zone of moderate
hardening, in which the hardness falls sharply with depth, and a third zone of relatively slight hardening,
in which the hardness falls gradually with depth. The depth of the first zone is determined by the impact
velocity.

These facts suggest that hardening in the first and second zones is associated with the phase transi-
tion Fe® == Fe€, and hardening in the third zone with plastic deformation in the shock wave, whose pres-~
sure is now lower than that corresponding to phase transition. In the first zone the phase transitions are
complete, in the second zone only partial. In this case in order to determine the depth of the zone AB it is
obviously sufficient to determine in each instance the depth ée of the zone in which the hardness is con-

stant after hardening as a function of the impact velocity at a fixed projectile thickness. If it is possible
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to select a value of Fyy such that §(vg) = de(vy), then this confirms the hardening picture indicated and the
proposed relation for the phase transition kinetics (2.16), as well as giving the real value of Fy,.

ju—
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